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Solution of Dirac Equation in a Singularity-Free 
Kaluza-Klein Cosmological Model 

S. K. Srivastava I 

Received April 27, 1993 

The singularity-free solution of (4 + D)-dimensional Einstein field equations for 
the Kaluza-Klein cosmological model is obtained. Then the Dirac equations 
are solved in this model. 

In the context of the unification of gravity with other fundamental 
forces of nature, Kaluza- Klein-type models (Kaluza, 1921; Klein, 1926a,b) 
are good candidates. In these theories (Duff et al., 1986, and references 
therein) space-time is supposed to have the manifold structure M4x B ~ 
where M 4 is the usual para-compact four-dimensional space-time 
(Minkowskian or non-Minkowskian) and B D is the extra D-dimensional 
compact manifold (also called the internal manifold). The observable 
universe is 4-dimensional, hence B D is supposed to have a very small 
size. 

The coordinates of the (4 + D)-dimensional manifold are separated 
into the coordinates x" (p = 0, 1, 2, 3) of M 4 plus the coordinates ym 
(m = 4 . . . . .  D + 3) of B D. Here, B D is taken as T z' (D-dimensional torus), 
which is the product of D copies of circles. The line element is the 
generalized Robertson-Walker line element given as 

r2(t) 
d s 2 = d t 2 -  (1 +2-~-'-)k~2\2[(dxa)Z+(dx2)2w(dx3)2]-R2(t)gnndymdy n ( l a )  
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where 

a2 = (x')2 + (x2)2 + (x3)2 (lb) 

2 2 2 2 gmn dY m dy" = p~ dO~ + P2 dO2 + " "  + Po dOo (lc) 

(P~, �9 . . ,  Po are the radii of the circles of T D and 0 ~ , . . . ,  0o are angular 
coordinates), k3 is the scalar curvature, having possible values - 1 ,  0, + 1 
for open, flat, and closed models, respectively, and r(t) and R(t)are scale 
factors. 

The (4 + D)-dimensional Einstein field equations without cosmologi- 
cal constant are 

GMN = RMN -- �89 = 8z~G(T~)u + T (~~ ~ Mu, (2) 

where Gmu is the Einstein tensor, RMu is the Ricci tensor, G is the 
(4 + D)-dimensional gravitational constant, -~tNT-(,.) is the energy-momentum 
tensor for matter (which is supposed to be a perfect fluid) and T (g') is the 
energy-momentum tensor from the action for the Dirac spinor ~b given as 

1 f r3R ~ 
S~r dt d3xd~ (1 q. k3ff2/4)3 [gO(y)]l/2i~TMDM~l (3) 

where DM is the covariant derivative, 7 M (M = 0, 1, 2, 3 , . . . ,  3 + D) are 
(4 + D)-dimensional Dirac matrices, and i = x / -  1. 

The line element on the 3-dimensional t = const subspace N 3 of M 4 
can be written from (la)  as 

d62 _ (dxl) 2 + (dx2) 2 + (dx3) 2 

(1 + k3a2/4) 2 (4) 

A map f :  N 3= {(X I, x2, x3)}--*E3= {(X 1, X "2, X3)}, is defined such that 

OXi= {1 k ~2~--1 G~XI 
+ ~ - - - )  and 3x j = 0 (i ~ j )  (5) OX i \ 

The derivatives given in (5) form a Jacobian matrix which is nonsingular 
for k3 = + 1 only when a < 0o. In the case k3 = - 1, these derivatives do 
not exist for cr = 2. Thus for a viable theory 

<oo  when k 3 = + l  
a 5 2  and <0o  when k 3 = - I  (6) 

The line element of E 3 can be written as 

a,7  = (ax')  + (axe) + (clx ) (7) 
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where [[ 4 
[4 + (x2) 2 + (x3) 2] 1/2 

when k3 = + 1 

, 4 

4-(x2)2-(x3)2]'/2 
when k3 = - 1 

when k3 = 0 

xl 1 tan-114 + (x2) 2 + (x3)2] 1/2 x~ = x~ . . . .  ~t 

xl 1 tanh-I  [4 - (x2) g2- (x3) 2] 1/~ ~2 = x3 =- co.~t 

i4 + (x 1)2 + (x3)2] 1/2 tan-114 + (x 1)2 + (x3)2] 1/i ~1 = 

when k3 = + 1 

X 2 =  l 4 I [4  - (x 1) 2 _ (x 3) 2 ] ~  tanh 1 

when k 3 = - 1 

x 2 when k3 = 0 

X 3 = con st 

x2 ] 
[4 - (x 1)~-- (x3)2] 1/i x, = x3 . . . . .  t 

(8) 

[ 4 -1 x3 ] 
i 2 2 2 1/2 tan 1 2 2 2 1/2 i 4 + ( x  ) - + ( x  ) ] [ 4 + ( x  )5--+ ( x )  ] -Jx~=x2 . . . . .  t 

when k3 = + I 

X 3 = J 4 tanh-I  X3 "1 
I 1 2 2 2 1/2 1 2 2 2 1/2 [ 4 - ( x  ) - ( x  ) ] - -  

L w h e n  k 3 = - 1 

x 3 when k3 = 0 

Thus, one finds that map f :  N 3 ~ E 3 is onto, but one-to-one only when 
k3 = 0 or - 1 .  From (5), it is clear that f is a c l-function subject to the 
condition (6). It can be easily shown that f - i  is also a c l-function, 
provided that conditions (6) are satisfied. So, in the case k3 = 0 or - 1 ,  f i s  
a c 1-diffeomorphism. One knows that a map which is a cl-diffeomorphism 
is definitely a homeomorphism (Von Westenholz, 1978). Hence, N 3 can be 
uniformly deformed to E 3 with metric given by (7) subject to conditions (6) 
in the case k3 = 0 or - 1 .  

The action (3) for ~k is covariant as well as conformally invariant. 
Hence the action (3), in the background geometry given by (1), is equiva- 
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lent to the action for ~ in the background geometry given by 

Hence 

ds 2 = dt 2 - r2(t)[(dXl) 2 + (dX2) 2 + (dX3) 2] 

- R~(t)(p~ do~ + . . .  + p~ d ~ )  

Sr = f dt d3X dDy r3R~ ~/2i~TMDMO 

where 7 M= (7", Y m) can be written as 

l 1 y 2 =  1 -2 y3 1 ~3 

~ 4 _ ~  if4 , ]}3 + D =.__ ~3  + D 

R(t) '" " " R(t) 

Srivastava et aL 

with 

such that 

(9) 

(10) 

(11) 

~5 . * 0 " 1 " 2 " 3 ~ * ~ x  2 =t  T y ~ y ~y~) =1 

and ~" are Dirac matrices on B ~ The y" (/~ = 0, 1, 2, 3) are standard 4 x 4 
�9 l~ . . 

Dirac matrices on 4-dimensional flat space-time, y" and I 0dentlty) are 
2~215 2 ~ matrices (when D is even) and 2w-1)/Ex 2 (0-  1)/2 matrices 
(when D is odd). Here ~m are Dirac matrices on T ~ which is a manifold 
having [U(1)] ~ as its symmetry groups. So, ~ " = I  (Duff et al., 1986; 
Gilbert and McClain, 1984; Wetterich, 1983). 

The energy-momentum tensor for r can be derived from the action (3) 
or (10). For convenience, here it is derived from the action (10) as 
(Audretsch and Schafer, 1978) 

i 
T(ffN = ~ [~7(u DN) ~h] (14) 

From the actions (3) and (10), it is obvious that ~0 is a noninteracting 
field. Hence it will behave like a perfect fluid. So, we have from (14) 

= <OIT(o '~ = = <olr , Jo> ( 1 5 )  

7 " = ~ " |  (12) 

~rn ~5| (13) 
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Thus E (~ p(~O, and P(q') are vacuum expectation values of T~ TM. So, due to 
the spatial homogeneity of the model, these quantities have only time 
dependence. 

Now, the total energy density, pressure on N 3, and pressure on T D are 
written as E = E (m) + E (qt), p =p(m) +p(~,), and P = p(m) + p(O), respectively, 
where e(m), p(m), and p(m) correspond to the perfect fluid (matter other 
than tp). 

The energy-momentum tensor TMN for the perfect fluid (matter plus 
qJ) is written as (Gleiser and Taylor, 1985) 

TMu = (E + p) UM UN - -  (6p + 6"P)g~N (16) 

where 

for and for 
6 =  for M,N=#,v for 

M,N =#, v 
M,N =m,n 

(17) 

U l = U z . . . . .  and U M is normalized as UMUM= 1 (U~  +1, 
U3+z~=0). 

Conservation of T Mu yields (Maeda, 1984) R) i +E 3 + D-R + 3pr+ -R=O (18) 

Einstein's equations can be written as 

6k3 t2(  ~ R"2 / r , \ 2  / R ' \ 2  
GO= r2,2 + 3 +D--R)-3~r  ) -D~--~)=8ndtv2c (19a) 

2k3t~+d (r" ~ r' ( ~ R') 
r2lZ d T \ r J + r  3 +D--~ =-87rdt2p (19b) 

d,\Rj+-ff +D~ =-8~dt2pe (1%) 

where prime denotes derivative with respect to the dimensionless parameter 
t'= t/tp and I is a constant of unit magnitude and the dimension of length. 

Many solutions of (19) suffer from the disease of "crack of doom" 
singularity. Rosenbaum et al. (1987) have suggested diagrammatic solu- 
tions and have shown that, by an appropriate choice of parameters, the 
"crack of doom" singularity can be avoided. A realistic solution should be 
constant in the asymptotic limit (t ~ oo). Gleiser and Taylor (1985) have 
derived a solution of this kind assuming suitable relations between E, p, and 
P for the D = 2 case. Here, a simpler solution satisfying the above criteria 
for a realistic model is suggested. 
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It is assumed that 

1 
R 2(t) = f2  + _ _  (20) 

r2(t) 

where f is a constant. 
Connecting (20) with (19b) and (19c), we have 

2k~ tp 2 2f2r 2 = -8zrGtp2[p (") + p(r + (P( ')  + P(~'))( 1 +f2r2)] (21) 
r212 q 1 + f2r2 

In order to solve equations (19), one needs equations of  state. But no 
equation relating e, p, and P is available. Nevertheless, one may impose the 
condition 

p(m) + p(r + (p(m) + p(r +fZr2) = 0 (22) 

In (22), p(r and p~O) can be calculated using (14) if one knows the solution 
of  the Dirac equation @, but p(m) and pc,,) are the pressures for an arbitrary 
perfect fluid. Condition (22) may be accepted provided that it is satisfac- 
tory from the physical point of  view. From this condition, obviously p(m) 
and p(m) have time dependence only, due to spatial homogeneity, p(") and 
pc,,) can be positive or negative, depending on the signature of  p(O) and 
P(q'). In the case p(O) ,~.p(,,o and P(~) ,~ p(m), (22) can be written as 

pm + p(m)( l + f2r2) = 0 

which is true at least for dust (known perfect fluid). Thus, the possibility of 
(22) can be accepted. 

Under condition (22), equation (21) yields the exact solution 

1 +f2r2  = (-~ + Icr 2 (23) 

provided that k3 = - 1. If k3 = + 1, equation (21) yields a complex solution 
and the solution is constant if k3 = 0. So, hereafter, only k3 = -  1 is 
considered. 

Solutions (20) and (23) can be accepted if they satisfy the constraint 
(19a). 

From conservation equations, D~tGMX= 0 = DMT ~u, one gets 

aGoO= o O 0t = ~ T~ (24) 

In the model considered here, equation (24) implies that if (19a) is satisfied 
at one particular epoch, then it is always satisfied. So, one can choose an 
epoch t = O. 
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Connecting equations (18) and (22) and integrating, one gets 

cr3R~  + D -~APR] dt" 

(Co = const), which yields that 

Now from (19a) at t = 0 one gets 

- 6 t ~ 2 ( ~  2 - 1) + ( 3 ~  2 - 0 )  2 - 3 ~  4 - O = 8 ~ d t ~ e ~  - 1 ) ( ~ 2 4 7  ~/2 
f a  - 5~(D - 1) (26) 

Equation (26) yields the condition under which solutions (20) and (23) 
satisfy the constraint equation (19a) at t = 0. Equation (26) can be written 
approximately as 

~4 _ 6D~2 + (D 2 _ D) = 0 (27) 

neglecting the term on the r.h.s, of  (26) as 

G = (27z)Dpl " ' "  PDGu = (21c)DPl "" "poMp 2 

Equation (27) yields 

~2 = _ ~[3D _ (3D 2 + 6D)1/2] (28) 

From (28), one finds that ~2 = 1 for D = 1 and D = 6 if only the negative 
sign is taken, otherwise ~2> 1 for every D. This result has the interesting 
feature that the solution r(t) is singularity-free. As a result, the solution 

R(t) = 2_~ (ft / l  + ]~[)2_ 1 (29) 

also is singularity-free for t -> 0. 
Now we are in a position to solve the Dirac equation in the cosmolog- 

ical model discussed above. But before we do this, the action (10) should 
be dimensionally reduced to four-dimensions. 

The metric gMN provided by the line element (9) can be conformally 
transformed to 

)(/~og 0 ) gMu = R2(t)g~N = R2(t uv (30) 
- -  gmn 

Under the transformation (30), the action (10) is 
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where 

S r i v a s t a v a  e t  a i .  

I 
t 

z = dt'/R(t') (31b) 

O =/~(3 + n)/2O, (31c) 

7 TM are Dirac matrices with respect to the new metric g'~N, and D ~  is the 
corresponding covariant derivative. 

~,' can be written in decomposed form as 

n l . . . n D =  - ~  

where (4) (4) ~(,)(x) = ~b,,n2...,o(x) is a four-dimensional Dirac spinor. So the 
dimensionally reduced four-dimensional action for the Dirac spinor is 

S~ ) = 2  dz (33a) 
(n) 

where 

+no 
Pl PD 

Here, the normalization condition 

f d~ [go(Y)] I / 2 ~ ( n ' ) Z ( n )  = " " 6.,1. ' 

with 

has been used. 
Under chiral rotation (Wetterich, 1983) 

~b(n ) ~ ~b(.) = exp i2(~) ~ ~ ~(~) 

the induced mass term in (33a) obtains the canonical form 

and the kinetic energy term is unaffected, so we have 

f 3 / �9 ,'/z ,' r S~ ) = ~  dtd X -~ (9(n)(ty D u +),(n))(9(.) 
(n) 

(33b) 

(33c) 

(34) 
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The action (34) yields the Dirac equation for ~b~n ) as 

�9 t [ A ~ t  t l  i t7 u~O(.) + 2(~)~9(.) = 0 

t The covariant derivative D u is given as 

D~, = a. - F.  

where 

1 p p o" v ~ a  ~ b  Fu = Z(~3uha + F,~ ,ha)gwhb7 7 

with the tetrad hap defined as (Srivastava, 1989) 

hoA-. ,  = a t ~ b 6 p ~  I1ab 

Hence 
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(35) 

(36a) 

(36b) 

(36c) 

.. Ffl (k, z) -I 
#o(,,) = ( 2rrr /R )  - 3/2 exp(ik " a )l f u ( k ,  z)J (39) 

and connecting it with equation (38), one gets the coupled equations 

iR(k [g, - i2(.)]f~ + �9 a)fu = 0 (40a) 
r 

+JR 
[0. + i2(.)]f u (k �9 a)fl = 0 (40b) 

r 

Equations (40) can be rewritten as 

O _ i2(.) + i (k  - a)fu = 0 (41a) 

~-~ + t2(.) ~ x + i ( k .  a)f~ = 0 (41b) 

Setting 

ro = 0, F~ = - ~  \ r  f , fo (37) 

r2 = - ~ f2f0, r3 = - ~  \ - ;  f3fo 

where the double prime denotes derivative with respect to z defined by 
equation (31b). 

Now the Dirac equation (35) can be written as 

[ +23(~' R"'~I/d go a. R-''#~(") +---R(f'0'r +f2a2+f3a3)q~(") -i2(.14~(.) =0 (38) 
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where 

From equation (41a) 

f ' dt" 
= r(t') 

f~ i(k. ~) { ~ r)f~ -k 

and connecting it with (41b), we have 

+ i2(.) -- i2(.) + k 2fx = 0 

which can be rewritten as 

?-~f, + k2 + -k-r 

where 

Using the solutions (20) and (23), we find equation (42b) reduces to 

d2fl . { m2f-4 ~ �9 2 ~ ~-i + ka + tanh a -~ smh 

- i ~ , n , ~  s i n h ( ~ ) [ 2 -  t a n h 2 ( ~ ) l } f l =  0 

For very small ~, equation (43) is approximated as 

d2A 
d~ 2 + (k 2 - 2i2(n)f2FZ~fl = 0 

which yields the solution (Murphy,  1960) 

/" [2.~ 3/2~ f l  = 2'l/2[Nl'.~l/3k3~ j "[- N2J -1 /3 (223 /2 ) ]  

where 

z -  (2).(.)j~2F2)2/3 exp i 3 - - 0  

Srivastava et al. 

(41c) 

(42a) 

(42b) 

(43) 

(44) 

(45a) 

(45b) 
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with 

0 = tan-l(22(3)~/fZ12kZ ) 

and Jp(X) is the Bessel function. 
Connecting equations (45a) with equation (42a), we find 

fn  = (22(.)f  2Y2) 1/3 e~/3 (k .  a)z -l/2 
2R z 

(45c) 

X {N3[Jl /3(2z  3/2) -~- z3/2J-2/3(2Z312) --  z 3/2[,14/3 \3 ~/-2- 'r 3/2u 

2 3/2 + Na[S_  1/3(~z ) -1- z3/2J_4/3(2z3/2 ) - z3/2]2/3(2z3/2)]} (45d)  

Corresponding to f~ and fn  given by equations (45a) and (45d), ~b(,) 
can be written as 

~(,)~ = ( 2rr R ) -  3/Z exp( ik . X )  

x z l/2[N 1 usJl/3(Zz 3/z) + Nzfi~J_ ,/3(2z3/2)] (46a) 

and 

e i~/3 '/ r ~--3/2 (9(n)lls=(22(n)f2]-Z)l/3-~ (k " a)zl/Z~2n-~) exp(ik- X) 

z3/2j t2_~312~ _ z312J413(~z3/2)] x {N3us[J,13(2z 312) + -2/3t3- , 

_~_ N4us[J_l/3(.~ Z ^  2 3/2) .jf. z3/2j_4/3(2z3/2) _ z3/2j2/3(2z3/2)]} (46b)  

where z is defined by equations (45b) and (45c) and for spin quantum 
number s = + 1, u~. (t~,) are given as column matrices 

~l = , ~ - 1  = Ill 
U 1 I i~ _ k  3 , U - l =  - k l  + ik2 

- k l - ik2 k 3 

(47) 
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The normalization constants N~ can be evaluated using the condition that 
the norm defined as 

(~,~, 4, ~') ~ ,/-S~-g, d~x ~-o~, = 6~y  u's" (48) 
dt COP.St 

approaches (2~)-36ss,33(k- k') in the flat space limit (Srivastava, 1989). 
So, 

2 3/2 -- 1 N l = [kJl/3('~z I )] 
2 3/2 -- 1 N 2 = [J_l/3(~Zl )] 

N3 = 212'~(n)]'2"12] ~1/3~1/2[1"~ 1 t a l / 3 ~ 3  ~(2--'r3/2~1 1 

.73/2 /" t'_2. v,3/2~ .~3/2 /" /_2 ,.. 3/2"~'1 ~ 1 
"31- "~1 "~- -2 /31 .3~1  I ~ "~1 "4/31.3"~1 )J  

N4 2122(.)f2/2] -i/3k~l/2r J [2,~312~ c. 1 /. - - 1 / 3 k 3 ~ 1  ] 

Z3/2I  [2_.Z3/2" ~ 3/2 2 3/2 - - I  
"q- 1 " - - 4 / 3 ~ , 3  1 . I - - Z l  J2/3('3ZI ) ]  (49) 

where 

with 

21 = (22(n)j~]-2)2/3 exp i -~--01 

01 = tan- 1122(,)fzPE 2 cosh- as] 

For large ~, equation (43) is approximated as 

dZfx~-[k2+m2f  4 e 2 e / ' - i 2 d , ~ 2  (,o f-2-- e~n~ = 0 1  2 

which is integrated to 

/ , k ,  ) [ / 2 K L + b  ) 
f i = e x p ~ - ~ +  7 + Le ~n cl t F t ~ ~ ' ~ - - ~ , Z K ,  - 2 L e  ~n 

/ 
+ C 2 (  21e-~n) 1-2/c 1FIll  + - -  I 

where 

2KL + b 
2L 

2K, 2 - 2 K ,  -2Leen)]  

K 2 - K + lZk 2 = 0 

L 2 = --m2f412 

b = -- i2(. )~2l 

(5o) 

(51a) 

(51b) 

(51c) 

(51d) 
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From equations (42) and (51) 

i ( k "  a) - 2 l  [c3 YI (T~) q- c4 Y2 (T")] f n -  ~c-~ exp + + Le vl 

where 

(52a) 

and 

- 1 + 2k + 2Le,/l i2<,o p~/l'] {2KL + ) 
Y1 (~ = 2l �9 - 2f 2 - j ,  rl~- -f~ b, 2K, - 2Le~/t 

2KL + b {2KL + b ) 
+ 2 ~  ~ F , ~ ~  + 1, 1 + 2K, -2Le e/t (52b) 

y2(z. ) = ( -  1 + 2k2l + 2Legit - t ~ 5 2(.) e/t).] 

( 2KL+b 2K, 2-2K,-2Lee/ t )  x iF1 1+ 2-------~--- 

( 2KL+b 2K, 3 - 2 K , - 2 L e ~ ' )  (52c) + IF1 2 +  2 ~  

with K, L, b as defined in equation (51). 
Corresponding to f~ and fn given by equations (51) and (52), the 

components of ~b(~) can be written as 

l/2rcr'~ - 3/z 1/., ~ k~ I 
c~o,)i,s = ~--R -) exp~m " X -  ~l +-~- + Le'/' 

/ 

X [Cl Us IFI~ -{2KL+b~ ,2K, - 2Le ell) 

(53a) 

and 

dp~,,).,s =(2~--f)-3/2exp(ik. X - ~ + - - ~  ~ k~+Le~/t) i(k~a) 

• [C3 Us Y1 (~ "+- e4 as Y2 (~] (53b) 
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The normalizat ion constants  in equations (53) are calculated as 

Cl = k ~1~'~ ,2K, -2Le  ~"/t exp 

[ ( 2 K L + b  
c2 = ( -2 lee~ 2K- l F1 1 -~ 

2L 

x e x p ( ~  k~Ol Le~~ 

(~~ k~~ Le~o/t) c3 = [k Y1 (?o)] - ~ exp ~ l 

c4=[r2( ,~0)]-1 e x p ( ~  kgOl Le~~ 

where ~ = l c o s h -  1 ~. 

2K, 2 - 2 K ,  -2Lee~ -~ 
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